Pharmacy Duty Scheduling Problem
Exact and Heuristic Approaches

Gökhan Ceyhana, Fatih Kocatürkb and Özgür Özpeynircib

a Middle East Technical University
b İzmir University of Economics

Laboratoire Genie Industriel, Ecole Centrale Paris
November 4th, 2014

This work is supported by TUBITAK with grant number 111M107
1 Introduction

2 Branch and Price Algorithm

3 VNS Heuristics

4 Computational Results

5 Conclusion
Pharmacies in Izmir

Around 1000 pharmacies and population ~ 3.6M
Pharmacy Duty Scheduling (PDS) Problem

- PDS deals with assignment of duty days to pharmacies during the planning horizon
- PDS is a multi-period facility location problem
 - pharmacies are the facilities
 - opening a facility is assigning a duty to a pharmacy
 - multiple days in the planning horizon
Notation

Sets

- i: demand points (customer nodes), $i \in \{1, \ldots, I\}$
- j: facility sites (pharmacies), $j \in \{1, \ldots, J\}$
- t: time periods (days), $t \in \{1, \ldots, T\}$
- k: regions, $k \in \{1, \ldots, K\}$
 - J_k: Set of pharmacies in region k

Parameters

- h_i: demand at customer node i
- d_{ij}: distance between customer node i and pharmacy j
- n_j: # of duties for pharmacy j
- r_j: region of pharmacy j
Decision variables

\[y_{jt} = \begin{cases}
1 & \text{if pharmacy } j \text{ is on duty on day } t \\
0 & \text{otherwise}
\end{cases} \]

\[x_{ijt} = \begin{cases}
1 & \text{if pharmacy } j \text{ serves customer } i \text{ on day } t \\
0 & \text{otherwise}
\end{cases} \]
Mathematical Model

Minimize

\[F = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{t=1}^{T} h_i d_{ij} x_{ijt} \]

Subject to

\[\sum_{j=1}^{J} x_{ijt} \geq 1 \quad \forall i, t \]

\[\sum_{t=1}^{T} y_{jt} = n_j \quad \forall j \]

\[x_{ijt} \leq y_{jt} \quad \forall i, j, t \]

\[\sum_{j \in J_k} y_{jt} = 1 \quad \forall t, k \]
Dantzig-Wolfe Decomposition

MASTER PROBLEM:

Sets:

\[S \]: set of feasible single day schedules
\[S_j \]: set of feasible single day schedules which include pharmacy \(j \)

Parameters:

\[a_{ij}^s \]: 1 if pharmacy \(j \) is the closest pharmacy to customer \(i \) in schedule \(s \), 0 otherwise

Decision Variables:

\[\lambda_s \]: number of times schedule \(s \) is used
Dantzig-Wolfe Decomposition

(MP):

Minimize

\[
F = \sum_{s \in S} \lambda_s \sum_{i \in I} \sum_{j \in J} a_{ij}^s d_{ij} h_i
\] \hspace{1cm} (6)

Subject to

\[
\sum_{s \in S} \lambda_s \geq T \hspace{1cm} (7)
\]

\[
\sum_{s \in S_j} \lambda_s \leq n_j \hspace{1cm} \forall j \hspace{1cm} (8)
\]

\[
\lambda_s \in \mathbb{Z}^+ \hspace{1cm} \forall s \in S \hspace{1cm} (9)
\]
Pricing Problem

Sets:

\[J_k \]: set of pharmacies in region \(k \)

Parameters:

\(v \): dual variable associated with (7) in MP
\(u_j \): dual variable associated with (8) in MP

Decision Variables:

\[y_j = \begin{cases}
1 & \text{if pharmacy } j \text{ is on duty} \\
0 & \text{otherwise}
\end{cases} \]

\[x_{ij} = \begin{cases}
1 & \text{if pharmacy } j \text{ serves customer } i \\
0 & \text{otherwise}
\end{cases} \]
(PP):

Minimize

\[F = \sum_{j=1}^{J} \left(\sum_{i=1}^{I} x_{ij} d_{ij} h_i \right) - u_j y_j \] - v \quad (10)

Subject to

\[\sum_{j=1}^{J} x_{ij} \geq 1 \quad \forall i \] \quad (11)

\[x_{ij} \leq y_j \quad \forall i, j \] \quad (12)

\[\sum_{j \in J_k} y_j = 1 \quad \forall k \] \quad (13)
\(\lambda^*_s \): the optimal value of decision variable \(\lambda_s \)

\[
\beta_{gh} = \sum_{s \in S_g \cap S_h} \lambda^*_s
\]

(15)

Pick a pair \((g, h)\) such that \(|\beta_{gh} - \lfloor \beta_{gh} \rfloor - 0.5|\) is minimum.
Generate the left child

\[
\sum_{s \in S_g \cap S_h} \lambda_s \leq \lfloor \beta_{gh} \rfloor,
\]

(16)

and the right child.

\[
\sum_{s \in S_g \cap S_h} \lambda_s \geq \lceil \beta_{gh} \rceil
\]

(17)
Branching

- Select the left child first in a depth-first manner.
- Update the objective function of (PP).
- ρ_{gh}: the dual variable of the branching constraint
- F: the objective function of the current node

For the left child:

$$F_{g,h} = F - \rho_{gh}(y_g + y_h)$$ \hspace{1cm} (18)

For the right child:

$$F_{g,h} = F + \rho_{gh}(y_g + y_h)$$ \hspace{1cm} (19)
At the end of the root node:
- Let $S^* = \{ \lambda_s | \lambda_s^* > 0 \}$
- Solve (MP) as an IP problem: $\lambda_s \in S^*, \lambda_s \in \mathbb{Z}^+$

At each node of the tree:
- Let T' be the partial schedule formed as follows:
 \[T' = \sum_{s \in S} \lfloor \lambda_s^* \rfloor \]
 \[(20) \]
- If $T' \geq \alpha T$, then run a heuristic for $T - T'$ days, $0 < \alpha < 1$.

Ceyhan, Kocatürk and Özpeynirci
PDSP: Exact and Heuristic Approaches
Pricing Heuristics

Heuristic 1:

- Consider each region separately,
- Pick the best pharmacy in each region.

\[D_j = \{ i \in l \mid d_{ij} \leq d_{ij'} \quad \forall j' \in J, r_j \neq r_{j'} \} , \quad \forall j \in J \tag{21} \]

\[c_j = \left[\sum_{i \in D_j} d_{ij} - u_j \right] / \left[\sum_{i \in D_j} h_i \right] \tag{22} \]

\[j_k^* = \min_{j \in J_k} c_j \tag{23} \]

Select \(j_k^* \) in each region \(k \).
Pricing Heuristics

Heuristic 2:

- Pick the best pharmacy considering the previously selected pharmacies

1. Determine a region order in priori: \(\{ k_1, k_2, ..., k_K \} \)
2. Suppose a partial schedule: \(j_1 \in J_{k_1}, j_2 \in J_{k_2}, ..., j_n \in J_{k_n} \)
3. Select \(j_{n+1} \in J_{k_{n+1}} \) as follows:
4. Let \(J' = \{ j_1, j_2, ..., j_n, j_{n+1} \} \)

\[
j_{n+1} = \arg\min_{j \in J_{k_{n+1}}} \left\{ \sum_{j \in J'} \sum_{i \in I} x_{ij} d_{ij} h_i - u_j \right\}
\]

(24)
Step 1: Solve *Heuristic 1*. Add the column and solve (RMP). If (RMP) objective function is not improved for last Q iterations, then go to *Step 2*.

Step 2: Solve *Heuristic 2*. Add the column and solve (RMP). If (RMP) objective function is improved, then go to *Step 1*. Else If (RMP) objective function is not improved for last Q iterations, then go to *Step 3*.

Step 3: Solve (PP). Add the column and solve (RMP). If (RMP) objective function is improved, then go to *Step 1*.
PDS problem has similarities with the $p -$ median problem in terms of the objective function and the uncapacitated candidate facilities

Hansen and Mladenović applied VNS to the $p -$ median problem

Hansen et al. (2001) showed that Variable Neighborhood Decomposition Search (VNDS) can be very useful for large scale problems

1Kocaturk and Özpeynirci, 2014, Variable neighborhood search for the pharmacy duty scheduling problem, C&OR
Neighborhood Structure

- A feasible solution \(z \) is a \(K \times T \) matrix, \(z \in \mathbb{N}^{K \times T} \)
- The set of feasible solutions is \(Z \), \(Z = \{z^1, z^2, \ldots\} \)
- Swap algorithm to move from one feasible solution to another
- The distance between two feasible solutions \(z^1 \) and \(z^2 \) is the number of swaps applied
- The distance metric is,
 \[
 \rho(z^1, z^2) = z^1 \ominus z^2 = z^2 \ominus z^1 = \sum_{t=1}^{T} \frac{|OD^1_t \setminus OD^2_t|}{2}, \forall z^1, z^2 \in Z
 \]
 where \(OD^s_t \) is the set of on duty pharmacies on day \(t \) in solution \(z^s \), \(s = 1, 2 \)
Algorithm 1 BVNS Algorithm

Initialization: Generate an initial solution (schedule) z, set the neighborhood structures N_k, $k = \{1, \ldots, k_{max}\}$ and define a stopping condition rule.

Main Step: Repeat the following steps until the stopping condition is satisfied,

1. $k = 1$,
2. Until $k = k_{max}$ repeat the following steps,
 a. *Shaking:* Generate randomly a solution, z', from the k^{th} neighborhood of z, $(z' \in N_k(z))$,
 b. *Local Search:* Find the local minimum, z'', around the solution z' using the swap algorithm,
 c. *Move:* If $f(z'') < f(z)$ then change the incumbent solution ($z = z''$) and return N_1, $(k = 1)$ and continue to search from there. Otherwise, increase the neighborhood ($k = k + 1$).
Shaking Strategy

- We generate random solutions in the shaking step 2(a),
- In order to obtain \(z' \) from \(z \),
 - Pick \(k \) regions,
 - In each region pick two different pharmacies,
 - If \(n_j > 1 \) for a selected pharmacy \(j \), select one of the days that pharmacy \(j \) is on duty,
 - Apply \(k \) swaps, one in each region to obtain \(z' \).
- We use a controlled random procedure. Give greater importance to
 - the regions with a high number of pharmacies,
 - the pharmacies with higher \(n_j \) values,
 - the days that increase objective function more,
Variable Neighborhood Decomposition Search (VNDS)

- VNDS randomly selects k regions,
- Consider the customers, I_k, that can be affected by duty changes in the selected regions,
- VNDS applies a heuristic search in the decomposed solution space,
- Combine the obtained solution for the decomposed space and the rest of the solution,
Algorithm 3 VNDS Algorithm

Initialization: Generate an initial solution (schedule) \(z \), set the neighborhood structures \(N_k, k = \{2, \ldots, k_{\text{max}}\} \), set customer subsets \(I_k, k \in K \) and define a stopping condition rule.

Main Step: Repeat the following steps until the stopping condition is satisfied,

1. \(k = 2 \),
2. Until \(k = k_{\text{max}} \) repeat the following steps,
 a. **Shaking:** Generate randomly a solution, \(z' \), from the \(k^{\text{th}} \) neighborhood of \(z \), \((z' \in N_k(z)) \), let \(w \) be the solution formed by randomly selected regions \(k \in K^* \) of \(z' \) and customers \(I^* = \bigcup_{k \in K^*} I_k \) such that \(w \in N^{k \times T} \),
 b. **Local Search:** Find the local minimum, \(w' \), in the space of \(w \) using the swap algorithm, and denote the corresponding local minimum with \(z'' \) in the whole space \(Z \), \((z'' = (z' \setminus w) \cup w') \),
 c. **Move:** If \(f(z'') < f(z) \) then change the incumbent solution \((z = z'') \) and return \(N_2, (k = 2) \) and continue to search from there. Otherwise, increase the neighborhood \((k = k + 1) \).
In step 2(a), VNDS has to select k regions,

It first selects an unselected region randomly,

Then, iteratively adds the closest regions until k regions are selected,

Reset "selection status" when all regions are selected,

Note that a selected region can not be the first region in the next iterations but still can be selected,
Variable Neighborhood Restricted Search (VNRS)

Three main differences between VNDS and VNRS algorithms:

- region selection strategy,
 - close regions vs random
- local search,
 - subset of customers vs all customers
- minimum k value,
 - $k \geq 2$ vs $k \geq 1$
Ağlamaz and Özpeynirci (2011) developed a lower bound algorithm for the PDS problem,

There are three groups of test problems; small, large and real life,

- Small Size (9 problem sizes and 10 instances)
- Large Size (3 problem sizes and 5 instances)
- Real Life (2 instances)
Computational Results - BP Algorithm

- Optimal solution known: 86 instances (out of 90)
- Root node LP relaxation
 - $LP_{RMP}^* = F^*$: 80 instances
 - Integer optimal: 35 instances
Computational Results - BP Algorithm

Table 1: The performance of BP in comparison to IBM ILOG CPLEX

<table>
<thead>
<tr>
<th>Instance</th>
<th>BP</th>
<th>IBM ILOG CPLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>I J T K</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>20 10 5 4</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>20 20 10 4</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>20 30 15 9</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>40 20 5 4</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>40 40 10 9</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>40 60 15 9</td>
<td>9</td>
<td>0.18</td>
</tr>
<tr>
<td>60 30 5 9</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>60 60 10 9</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>60 90 15 9</td>
<td>7</td>
<td>4.45</td>
</tr>
</tbody>
</table>

*The tests are conducted on a machine with Intel Core2Duo 3.00 GHz with 4 GB RAM.
Table 2: Test Results for Small Scale Problems

<table>
<thead>
<tr>
<th>I</th>
<th>J</th>
<th>T</th>
<th>K</th>
<th>Gap (%)</th>
<th>CPU (Secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Random</td>
<td>BVNS</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3.2</td>
<td>0.0</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>5</td>
<td>4</td>
<td>4.6</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>10</td>
<td>4</td>
<td>5.5</td>
<td>0.2</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>5</td>
<td>9</td>
<td>3.6</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>15</td>
<td>9</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>10</td>
<td>9</td>
<td>5.8</td>
<td>13.8</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>10</td>
<td>9</td>
<td>7.9</td>
<td>29.9</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>15</td>
<td>9</td>
<td>7.8</td>
<td>5.4</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
<td>15</td>
<td>9</td>
<td>8.9</td>
<td>13.8</td>
</tr>
</tbody>
</table>
Table 3: Test Results for Large Scale Problems

<table>
<thead>
<tr>
<th>I</th>
<th>J</th>
<th>T</th>
<th>K</th>
<th>Random</th>
<th>Gap (%)</th>
<th>CPU (Secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BVNS</td>
<td>VNDS</td>
<td>VNRS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BVNS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VNDS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VNRS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BVNS</td>
<td>VNDS</td>
<td>VNRS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>250</td>
<td>25</td>
<td>49</td>
<td>9.1</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>350</td>
<td>250</td>
<td>25</td>
<td>49</td>
<td>7.9</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>350</td>
<td>250</td>
<td>25</td>
<td>49</td>
<td>8.2</td>
<td>1.1</td>
<td>1.6</td>
</tr>
<tr>
<td>350</td>
<td>250</td>
<td>25</td>
<td>49</td>
<td>7.4</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>350</td>
<td>250</td>
<td>25</td>
<td>49</td>
<td>8.3</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>350</td>
<td>500</td>
<td>50</td>
<td>49</td>
<td>10.2</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>350</td>
<td>500</td>
<td>50</td>
<td>49</td>
<td>10.6</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>350</td>
<td>500</td>
<td>50</td>
<td>49</td>
<td>11.0</td>
<td>1.2</td>
<td>1.9</td>
</tr>
<tr>
<td>350</td>
<td>500</td>
<td>50</td>
<td>49</td>
<td>10.6</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>350</td>
<td>500</td>
<td>50</td>
<td>49</td>
<td>10.2</td>
<td>1.2</td>
<td>2.1</td>
</tr>
<tr>
<td>350</td>
<td>1000</td>
<td>100</td>
<td>49</td>
<td>11.4</td>
<td>2.6</td>
<td>3.4</td>
</tr>
<tr>
<td>350</td>
<td>1000</td>
<td>100</td>
<td>49</td>
<td>11.6</td>
<td>2.4</td>
<td>3.4</td>
</tr>
<tr>
<td>350</td>
<td>1000</td>
<td>100</td>
<td>49</td>
<td>10.6</td>
<td>2.3</td>
<td>2.8</td>
</tr>
<tr>
<td>350</td>
<td>1000</td>
<td>100</td>
<td>49</td>
<td>12.0</td>
<td>2.5</td>
<td>2.7</td>
</tr>
<tr>
<td>350</td>
<td>1000</td>
<td>100</td>
<td>49</td>
<td>11.5</td>
<td>2.2</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Table 4: Test Results for Real Life Problems

<table>
<thead>
<tr>
<th>Planning Period</th>
<th>Comparison Type</th>
<th>Random</th>
<th>Current</th>
<th>BVNS</th>
<th>VNRS</th>
<th>VNDS</th>
<th>LB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/3</td>
<td>Cost (Million km)</td>
<td>309.27</td>
<td>309.01</td>
<td>294.76</td>
<td>293.46</td>
<td>295.34</td>
<td>291.89</td>
</tr>
<tr>
<td></td>
<td>Gap (%)</td>
<td>5.96</td>
<td>5.87</td>
<td>0.98</td>
<td>0.54</td>
<td>1.18</td>
<td>-</td>
</tr>
<tr>
<td>2011/1</td>
<td>Cost (Million km)</td>
<td>321.41</td>
<td>321.12</td>
<td>306.28</td>
<td>304.82</td>
<td>307.55</td>
<td>303.28</td>
</tr>
<tr>
<td></td>
<td>Gap (%)</td>
<td>5.98</td>
<td>5.88</td>
<td>0.99</td>
<td>0.51</td>
<td>1.41</td>
<td>-</td>
</tr>
</tbody>
</table>
Future work

- Further improvements of BP algorithm
- Re-clustering the pharmacies
- A multiobjective approach: public interest vs pharmacists interests
- Implementation!
Conclusions

- A real life problem
- Problem specific exact algorithm
- VNS heuristics
Izmir University of Economics
- A foundation university
- Izmir Chamber of Commerce
- Established in 2001

Department of Logistics Management
- 8 professors, (Industrial Engineering, Business Administration)
- Undergraduate, Masters, and PhD Programmes
- Industry collaboration
- Open faculty positions (visiting or full time)
Questions and comments

ozgur.ozpeynirci@ieu.edu.tr
dlm.ieu.edu.tr